AMATH 422 - Computational Models in Biology
Jacob Kovacs
3/18/2015

Varying spatial dependence in the evolution of bacterial biofilms under
nontransitive competition

Introduction

Nontransitive competition is an ecological relationship where, as in the game of paper-scissors -rock,
species A dominates B, species B dominates C, and species C dominates A in circular fashion.
Nontransitive competition may occur in a multistrain community of Escherichia coli bacteria when
members of a toxin-producing strain (P), a toxin-resistant strain (R), and a toxin-sensitive strain (S)
inhabit the same region and have strain-specific average growth rates (g,) satisfying the inequality:

Zp < 8r <&
An equivalent condition may be phrased in terms of costs (c,) . Toxin production has a cost since
resources are diverted from growth and longevity and invested in toxin production. Resistance to a

toxin likewise carries a cost. When toxin-producers and toxin-resisters face the following relative costs,
the growth rates inequality above will also be satisfied:

Cr <Cp

Since the costs of toxin-production and toxin-resistance reduce longevity, the constraint may also be
expressed in terms of death rates, A,, and a toxicity constant, T:

At
e AU
AS0<AR <AP< 1+t

In addition to experiencing nontransitive competition, £. coli may form biofilms and thus constitute a
spatially-structured community. Spatial structure means that individual bacteria are fixed in space and
interact with their close neighbors, instead of floating freely and interacting with many more members
of the population. Many researchers have found spatial structure is an important determinant of
ecological dynamics (e.g. Durrett & Levin, 1997; Durrett & Levin, 1998; Kerr et al., 2002), finding in
general that the effect of spatial structuring is to permit more complex dynamics to emerge.

Prado and Kerr (2008) simulate a nontransitive and spatially-structured E. co/i community wherein
members of the resistant strain, R, experience mutation, making them more or less resistant to the
attacks of their toxin-producing neighbors and correspondingly more or less long-lived (since they pay
a price for resistance). Prado and Kerr find that optimal evolutionary strategy in these circumstances is
restraint. That is, members of the R strain maximize their share of the population by not minimizing
their death rate (equivalently, by not maximizing their resistance to toxin). This paper attempts to
replicate one of Prado and Kerr’s findings, and then runs a new simulation using different
specifications for spatial dependence.

Description of Prado and Kerr’s computational model

An agent-based model is well suited for simulating a spatially-structured population of bacteria that
evolves at the level of its individual members (agents). The structure is supplied by the way agents are
embedded together in a matrix, and governed by rules that may depend on the value of neighboring

cells. The size of an agent’s neighborhood is one important variable in the model: for instance, if the
neighborhood is defined to encompass the entire population, then the community is no longer
structured.

The simulation begins by randomly populating an LxL matrix with numeric codes for the values R, P,
S, and E, representing three strains of bacteria and empty cells. A second LxL matrix is created to
allocate and store resistance parameters corresponding to each member of strain R in the first matrix
(Fig. 1). The initial resistance values are drawn randomly from the interval [0.275, 0.329], a constraint
defined to preserve nontransitivity.

The simulation is run for 10 epochs, with an epoch defined as LxL iterations. At each iteration a single
agent is randomly chosen from the population. This agent, the focal point, is then altered in accordance
with the transition matrix summarized in Table 1. Possible transitions represent births and deaths of
bacteria: an empty cell may become populated with a member of S, R, or P, while an occupied cell may
either remain occupied or revert to an empty cell, E.

Figure 1. Visualization of two matrices used in the simulation. On the left, a 30x30 population of bacteria (strains R, S,
and P, plus empty cells, E). On the right, a matrix storing resistance parameters for each member of strain R.

10 20 30

Table 1. Transition matrix. Cell a; of the transition matrix specifies the probability that a strain of type j at time
will transition to type i at time n+1. Probabilities refer to birth events (f;) and death events (A,).

S P R E
S [1-Aq 0 0 f
P 1-Ay 0 f,
R 0 |1-4, £
E A Ay Ay | 1-fy-fy-Ey

Table 2. Definitions of parameters and variables.

E Empty cell in the matrix R Strain that is toxin-resistant

S Strain that is sensitive to toxin Ag Death rate of strain R; also R’s resistance to toxin

Ag, Baseline death rate of strain S Pr Probability that resistance level will mutate

P Strain that produces toxin i Size of mutation

Ap Death rate of strain P f, Proportion of strain i in the neighborhood of the focal point
T Toxicity of strain P

Some birth or death probabilities in the transition matrix are spatially dependent in a way that is quite
intuitive. The proportion of strain i in the neighborhood of a given focal point is denoted f; , and treated
as the probability that a member of strain i will be born into that focal point. Thus the more potential
parents in the area, the higher the likelihood that they will procreate. Similarly, the probability that S
will die increases with the presence of toxin-producers. Prado and Kerr specify a linear relationship
where the proportion of toxin-producing bacteria in the neighborhood is multiplied by per capita
toxicity (a constant) and added to the intrinsic death rate of the sensitive strain: A;=s0 + T f,. The
remaining two parameters in the transition matrix are the death rates of P and R. The intrinsic death rate
of P, A,, is defined as constant, while the death rate of R is allowed to vary through mutation.

Prado and Kerr are vague on some important details regarding their implementation of evolution. They
say “[t]o incorporate evolution in our simulations, we allow every cell to carry its own genotype g and
when an offspring is ‘born’, a mutation can occur to change the genotype” (Prado & Kerr, 2008, p.
540). This reads straightforwardly, but applying it to the possible transitions spelled out by the
transition matrix reveals the ambiguity. The relevant transitions are as follows: if the focal point holds a
member of strain R, and if this R does not die, it may mutate. If the focal point is an empty cell, it may
become populated with a newborn R. The first case is easy enough to implement; the second is the one
for which Prado and Kerr do not provide guidance.

In the first case, when a member of R is selected as the focal point in a given timestep, the probability
that R will die can be retrieved from the storage matrix, where its address in terms of matrix rows and
columns corresponds with that of the focal point. If R survives, then it may mutate with probability
0.01. A random mutation increment, i, is drawn from a uniform distribution between -0.001 and 0.001
and added to R’s current resistance value. This sum is checked against the nontransitivity constraints
specified above and the final value is recorded in the storage matrix.

In the second case, when an empty cell is selected as the focal point in a given timestep, the probability
that it will be populated by a member of strain R depends on the concentration of strain R within the
neighborhood (f;). This new R must be assigned a resistance value, which is then recorded in the
corresponding cell of the storage matrix. Prado and Kerr do not identify their method for assigning a
resistance value to a new R. Reasonable options are a random draw from the interval [0.275, 0.329]; the
midpoint of this interval, 0.302; or an average of the resistance values of parent R’s within the
neighborhood of the focal point.

In either case, at the end of each passing epoch once a number of mutations have occurred, the average
of all resistance values in the storage matrix is calculated and plotted. This reveals any trends in the
evolution of strain R’s resistance levels.

Results of simulations

Replicating Prado and Kerr: presence or absence of spatial structure and/or nontransitive
competition

With a few adjustments to the model described above, Prado and Kerr explore how spatial structuring,
nontransitive competition, or a combination of both affect the evolution of strain R’s average resistance
level. To simulate an unstructured community, they expand the size of the neighborhood to include the
entire LxL matrix (rather than a focal point’s immediate neighbors, their specification for the structured

case). To simulate nontransitive dynamics, they remove strains S and P from the matrix and allow
strain R to evolve by itself, still subject to the same constraints on mutation. Their results from this
exercise are presented in figure 2. [was unable to reproduce Prado and Kerr’s results (see Appendix for
MATLAB code); my results are presented in figure 3.

Altering spatial dependence in S’s death rate

I adjusted the specification for spatial dependence by using a nonlinear functional forms for the death
rate of S: A,=s0 + T f, + T f;and A;=s0 T f;* . In theory, this would intensify the effect that
neighboring toxin-producers have on S, and thereby reduce competitive pressures on the toxin-resistant
strain. Results of six simulations are presented together in figure 4. Use of a nonlinear form does not
appear to have any significant effect on the evolution of R’s death rate. All cases exhibit average death
rates that decline at a comparable pace, with no clear tendency for the linear case to behave differently
from the two nonlinear cases.

Figure 2. Evolution of average death rate of the resistant strain for four different scenarios. To determine transition
probabilities, structured scenarios (St.) reference a small neighborhood surrounding the focal point while unstructured
scenarios (Un.) reference the entire population. For some scenarios, the population consists of three strain types (All):
toxin-sensitive, toxin-resistant, and toxin-producing. For other scenarios, the population is entirely toxin-resistant (R).
The structured case where all three strains are present (St. All) exhibits restraint by failing to minimize its death rate;
the other three scenarios evolve rapidly towards their minimum. Source: Prado & Kerr, 2008.

0.285[' !
— St A
— SL R
L) Un. Al
Un. R
0.283- 1

0.282

0.281-

0.28-

0.279F

average death rate of resistant cells

0.278}
0.277
0.276

0.2?%

Figure 3. Evolution of average death rate of the resistant strain for four different scenarios. Attempted replication of
Figure 2. All cases exhibit declining average death rates, none as dramatic as Prado and Kerr’s; three cases may be
leveling out at a stable value while the structured three-strain case continues declining, exactly the opposite of Prado
and Kerr’s findings.

0.3024 | ; ; | :
——all, structyred
——R, structured

0.3022 F —all, unstructured ||
— R, unstructured

0.302 fiy

03014

0.3016

Ay, deathrake

n.3014

03012

n.3m

0.3008 L L L L L
0 200 1000 1500 2000 2500 3000

Epochs

Figure 4. Evolution of average resistance levels comparing linear and nonlinear specifications for S’s death rate, using
Ag=3s0+Tf, (‘Linear’, in blue), Ag=s0 + T f, + T f,? (‘Nonlinear1’, in green) and Ag=s0 T f, * (‘Nonlinear2’, in red).

0.3025 0.302
Linear

Monlinear 1
Monlinear2 0.3018

T
Linear

Monlinear1

Monlinear?

0.302
0.3016 |

03015 0.3014 |

03012

Awy. deathrate
Awy. deathrate

0.301 P

0.3008 |
0.3005

0.3006 |

| L L L L 0.3004 | L L L L
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000

Epochs Epochs

0.3022

0.302 %

0.3018

0.3018

03014

Avy. deathrate

0.3012

0.30

0.3008

0.3008
0

0.3022

0.302

0.3018

0.3018

0.3014

0.3012

2uwq. desthrate

0.3m

0.3008

0.3008

0.3004

0.3002

Conclusion

Linear
Monlinear 1

Monlinear2

n L . L L
s00 1000 1500 2000 2500
Epochs

3000

Linear
Honlinear1
Honlinear2

L L I I L
s00 100 1800 2000 2500
Epochs

3000

2. desthrate

2uwq. desthrate

0.3024

0.3022

0.302

0.3018

0.30186

03014

0.3012

0301

0.3008

0.3008

0.3004

0.3024

0.3022

m
0.302

0.3018

0.3018

0.3014

0.3012

0.3m

0.3008

0.3008

0.3004

Linear
Monlinear 1

Monlinear2

|
500

L I L L
1000 1500 2000 2500
Epochs

3000

Linear
Honlinear1
Honlinear2

|
500

L I I L
100 1800 2000 2500
Epochs

3000

This paper was unable to replicate Prado and Kerr’s (2008) finding of restraint in nontransitive,

spatially-structured populations, most likely because of unidentified errors in the code used. Modifying

the specification for spatial dependence had no obviously interesting effects. Additional efforts to

modify the spatial structure (by adjusting the size of the neighborhood, to explore the effects of scale in

between the extremes of structured/unstructured used by Prado and Kerr) were not successful. With
additional time, I would focus on replicating Prado & Kerr’s results and develop a way to implement a
mid-sized neighborhood in my code.

References

Durrett, R., & Levin, S. (1997). Allelopathy in spatially distributed populations. Journal of Theoretical
Biology, 185(2), pp. 165-171.

Durrett, R., & Levin, S. (1998). Spatial aspects of interspecific competition. Theoretical Population
Biology, 53(1), pp. 30-43.

Kerr, B., Riley, M. A., Feldman, M. W., & Bohannan, B. J. M. (2002). Local dispersal promotes
biodiversity in a real-life game of rock—paper—scissors. Nature, 418, pp. 171-174.

Prado, F. & Kerr, B. (2008). The evolution of restraint in bacterial biofilms under nontransitive
competition. Evolution, 62(3), pp. 538-548.

Appendix

clear all; close all; clc

% % DEFINE PARAMETERS
rand('state’, sum(100*clock))
L=300; % size of lattice
epoch=3000; its=300; % duration of simulation = 9,000,000 iterations
R=1; S=2; P=3; E=0; % codes for types of bacteria
dr min=0.275; dr_max=0.329; % constraints preserving nontransitive competition
prm=0.01; % probability that R mutates
s0=0.25; % intrinsic death rate of strain S
dp=0.3333; % intrinsic death rate of strain P
T=0.65; % toxicity of strain P

%% RANDOMLY POPULATE LATTICES
[LM1,resM1]=pop_all(L,R,S,P,E,dr min,dr_max); % initial pop, 3 strains
LM2=LM]1; resM2=resM1;

[LM3,resM3]=pop_R(L,R,E,dr_min,dr_max); % initial pop, | strain
LM4=LM3; resM4=resM3;

% TEST CODE, checking population (LM) and resistance (resM) matrices

% figure
% subplot(2,2,1)
% N=4;

% imagesc(LM1)

% cmap = jet(N);

% colormap(cmap), hold on

% Li=line(ones(N),ones(N), 'LineWidth',2);

% set(Li,{'color'},mat2cell(cmap,ones(1,N),3));

% legend('E',R",'S','P")

% subplot(2,2,2)

% imagesc(resM1)

% subplot(2,2,3)

% I=find(resM 1~=0); a=resM 1(1);

% hist(a)

% Y%max(max(resM1))

% %b=resM1>0; min(resM 1(b))

% I=find(resM 1~=0); [m,n]=size(resM 1(I)); sum(resM1(I))/m
% I=LM1==R; a=sum(sum(])); [=LM1==S; b=sum(sum(I)); [=LM1==P; c=sum(sum(I));
% atbtc

% figure
% subplot(2,2,1)
% N=2;

% imagesc(LM3)

% cmap = jet(N);

% colormap(cmap), hold on

% Li=line(ones(N),ones(N), 'LineWidth',2);

% set(Li,{'color'},mat2cell(cmap,ones(1,N),3));
% legend('E','R")

% subplot(2,2,2)

% imagesc(resM3)

» subplot(2,2,3)
y I=find(resM3~=0); a=resM3(I);
» hist(a)

XXX

% % EVOLVE POPULATIONS
[avgR]1]=evolve scenl(L,R,S,P,E,T,s0,dp,dr min,dr max,prm,LM1,resM1,epoch,its);
%avgR6 and avgR6 come from exact copies of the evolve scenl function,
% except one line changing the functional form of ds
[avgR2]=evolve scen2(L,R,S,P,E,T,s0,dp,dr min,dr max,prm,LM2,resM2,epoch,its);
[avgR3]=evolve scen3(L,R,E,dr min,dr max,prm,LM3,resM3,epoch,its);
[avgR4]=evolve scend(L,R,E,dr min,dr max,prm,LM4,resM4,epoch,its);

et=1:epoch;

plot(et,avgR1, et,avgR2, et,avgR3, et,avgR4)

legend('all, structured','R, structured','all, unstructured','R, unstructured")
Y%plot(et,avgR1, et,avgR5, et,avgR6)
%legend(‘Linear','Nonlinear1','Nonlinear2')

xlabel('Epochs')

ylabel('Avg. death rate")

function [LM,resM] = pop_all(L,R,S,P,E,dr min,dr_max)
rand('state’, sum(100*clock))
% RANDOMLY POPULATE LATTICE
LM=rand(L,L);
for i=1:L
for j=1:L
a=LM(i,));
ifa<0.25
LM(i,j)=R;
elseifa<0.5
LM(i,j)=S;
elseifa <0.75
LM(i,j)=P;
else
LM(i,j)=E;
end
end
end
% CONSTRUCT STORAGE MATRIX FOR RESISTANCE PARAMETERS

resM=dr_min + (dr_max - dr_min)*rand(L,L); % matrix of random dr w/in [0.275, 0.329]

I=find(LM~=R); resM(1)=0; % zeros out dr values corresponding to non-R cells
end

function [LM,resM] = pop R(L,R,E,dr min,dr max)
rand('state’, sum(100*clock))
% RANDOMLY POPULATE LATTICE
LM=rand(L,L);
for i=1:L
for j=1:L
a=LM(i,));
ifa<0.5

LM(i,j)=R;
else
LM(i,j)=E;
end
end
end
% CONSTRUCT STORAGE MATRIX FOR RESISTANCE PARAMETERS
resM=dr_min + (dr_max - dr_min)*rand(L,L);
I=find(LM~=R); resM(1)=0;
end

function [avgR1] = evolve scenl(L,R,S,P,E,T,s0,dp,dr min,dr max,prm,LM1,resM1,epoch,its)
for j=1:epoch

% CALCULATE AVG RESISTANCE
I=find(resM 1~=0);
avgR1(1,j)=mean(mean(resM1(1)));

for i=1:its

% RANDOMLY SELECT FOCAL POINT
Lb=linspace(0,1,L); rd1=rand; rd2=rand;
Lbl1=find(Lb<=rd1); Lb2=find(Lb<=rd2);
Lrow=Lb1(end); Lcol=Lb2(end);
LMI1(Lrow,Lcol); % focal point

% TEST CODE: do focal point draws look appropriately random?
%plot(i,LM1(Lrow,Lcol),'r+'), hold on

% DEFINE NEIGHBORHOOD OF FOCAL POINT
n=1; % 'radius' of square neighborhood
if Lrow-n>=1 && Lcol-n>=1 % problem-free scenario, not an edge case
LN=LMI(Lrow-n:Lrow+n, Lcol-n:Lcol+n); % defining the neighborhood
rLN=resM1(Lrow-n:Lrow-+n, Lcol-n:Lcol+n);
elseif Lrow-n<l % spilled over north edge of lattice
if Leol-n<1 % also spilled over west edge
LN=LMI(1:Lrow+n,1:Lcol+n); % defining the neighborhood
rLN=resM1(1:Lrow-+n,1:Lcol+n);
elseif Lcol+n>L % " east edge
LN=LMI(1:Lrow+n, Lcol-n:L);
rLN=resM1(1:Lrow+n, Lcol-n:L);
else % column position is OK
LN=LMI(1:Lrow+n, Lcol-n:Lcol+n);
rLN=resM1(1:Lrow-+n, Lcol-n:Lcol+n);

end
elseif Lrow-+n>L % " south edge
if Leol-n<1 % " west edge

LN=LMI(Lrow-n:L, 1:Lcol+n);

rLN=resM1(Lrow-n:L, 1:Lcol+n);
elseif Lcol+n>L % " east edge

LN=LMI(Lrow-n:L, Lcol-n:L);

rLN=resM1(Lrow-n:L, Lcol-n:L);
else
LN=LMI(Lrow-n:L, Lcol-n:Lcol+n);
rLN=resM1(Lrow-n:L, Lcol-n:Lcol+n);
end
elseif Lcol-n<1 % spilled over west edge, but row position is OK (per above)
LN=LMI(Lrow-n:Lrow+n, 1:Lcol+n);
rLN=resM1(Lrow-n:Lrow-+n, 1:Lcol+n);
elseif Leol+n>L % " east edge, "
LN=LMI(Lrow-n:Lrow+n, Lcol-n:L);
rLN=resM1(Lrow-n:Lrow-+n, Lcol-n:L);
end

% COUNT EACH STRAIN WITHIN THE NEIGHBORHOOD
[m,n]=size(LN); nn=m*n; % size of neighborhood

C=find(LN==8); fs=length(C)/nn; % proportion of S
C=find(LN==P); fp=length(C)/nn;

C=find(LN==R); fr=length(C)/nn;

% REFER TO TRANSITION MATRIX & UPDATE FOCAL POINT
rd3=rand;
if LM1(Lrow,Lcol)==S
ds=s0+T*{p;
%ds=s0+T*fp+T*{p"2; % change to nonlinear functional form
9 ()dS:SO*T*fp;
if rd3 <ds % does S die?
LM1(Lrow,Lcol)=E;
end
elseif LM1(Lrow,Lcol)==P
if rd3 <dp
LM1(Lrow,Lcol)=E;
end
elseif LM1(Lrow,Lcol)==R
if rd3 < resM1(Lrow,Lcol) % does R die?
LM1(Lrow,Lcol)=E; % zeros out population matrix
resM1(Lrow,Lcol)=0; % zeros out resistance matrix
else
rd4=rand;
if rd4 < prm % does R mutate?
drinc=0.002*rand -0.001; % by how much?
a=resM 1(Lrow,Lcol)+drinc;
if a>=dr_max % check against nontransitive competition constraint
resM1(Lrow,Lcol)=dr_max; % record mutation in resistance matrix
elseif a <= dr_min
resM1(Lrow,Lcol)=dr_min;
else
resM1(Lrow,Lcol)=a;
end
end
end
else % if the cell is empty ...
if rd3<fs % is an S born into it?
LM1(Lrow,Lcol)=S;

elseif rd3<(fs+fp) % or a P?
LM1(Lrow,Lcol)=P;

elseif rd3<(fs+fp+fr) % or an R?
LM1(Lrow,Lcol)=R;
I=find(rLN~=0);
resM1(Lrow,Lcol)=mean(mean(rLN(I))); % child assigned parents' avg value

end

end
end
end
end

function [avgR2] = evolve scen2(L,R,S,P,E,T,s0,dp,dr min,dr max,prm,LM2,resM2,epoch,its)
for k=1:epoch

% CALCULATE AVG RESISTANCE
I=find(resM2~=0); avgR2(1,k)=mean(mean(resM2(I)));

for i=1:its

% RANDOMLY SELECT FOCAL POINT
Lb=linspace(0,1,L); rd1=rand; rd2=rand;
Lbl1=find(Lb<=rd1); Lb2=find(Lb<=rd2);
Lrow=Lb1(end); Lcol=Lb2(end);
LM2(Lrow,Lcol);

% GET GLOBAL COUNTS
nn=L*L;

C=find(LM2==S); fs=length(C)/nn;
C=find(LM2==P); fp=length(C)/nn;
C=find(LM2==R); fr=length(C)/nn;

% REFER TO TRANSITION MATRIX & UPDATE FOCAL POINT
rd3=rand;
if LM2(Lrow,Lcol)==S
ds=s0+T*{p;
ifrd3 <ds
LM2(Lrow,Lcol)=E;
end
elseif LM2(Lrow,Lcol)==P
if rd3 <dp
LM2(Lrow,Lcol)=E;
end
elseif LM2(Lrow,Lcol)==R
if rd3 < resM2(Lrow,Lcol)
LM2(Lrow,Lcol)=E;
resM2(Lrow,Lcol)=0;
else
rd4=rand;
if rd4 < prm
drinc=0.002*rand-0.001;

a=resM2(Lrow,Lcol)+drinc;
ifa>=dr_max
resM2(Lrow,Lcol)=dr_max;
elseif a <= dr_min
resM2(Lrow,Lcol)=dr_min;
else
resM2(Lrow,Lcol)=a;
end
end
end
else
if rd3<fs
LM2(Lrow,Lcol)=S;
elseif rd3<(fs+fp)
LM2(Lrow,Lcol)=P;
elseif rd3<(fs+fp+fr)
LM2(Lrow,Lcol)=R;
I=find(resM2~=0); resM2(Lrow,Lcol)=mean(mean(resM2(I)));
end
end
end
end
end

function [avgR3] = evolve scen3(L,R,E,dr min,dr max,prm,LM3,resM3,epoch,its)
for 1=1:epoch

% CALCULATE AVG RESISTANCE
I=find(resM3~=0); avgR3(1,l)=mean(mean(resM3(1)));

for i=1:its

% RANDOMLY SELECT FOCAL POINT
Lb=linspace(0,1,L); rd1=rand; rd2=rand;
Lbl1=find(Lb<=rd1); Lb2=find(Lb<=rd2);
Lrow=Lb1(end); Lcol=Lb2(end);
LM3(Lrow,Lcol);

% DEFINE NEIGHBORHOOD OF FOCAL POINT
n=1;
if Lrow-n>=1 && Lcol-n>=1
LN=LM3(Lrow-n:Lrow-+n, Lcol-n:Lcol+n);
rLN=resM3(Lrow-n:Lrow-+n, Lcol-n:Lcol+n);
elseif Lrow-n<1
if Lcol-n<1
LN=LM3(1:Lrow+n,1:Lcol+n);
rLN=resM3(1:Lrow+n,1:Lcol+n);
elseif Lcol+n>L
LN=LM3(1:Lrow+n, Lcol-n:L);
rLN=resM3(1:Lrow+n, Lcol-n:L);
else

LN=LM3(1:Lrow+n, Lcol-n:Lcol+n);
rLN=resM3(1:Lrow+n, Lcol-n:Lcol+n);
end
elseif Lrow+n>L
if Lcol-n<1
LN=LM3(Lrow-n:L, 1:Lcol+n);
rLN=resM3(Lrow-n:L, 1:Lcol+n);
elseif Lcol+n>L
LN=LM3(Lrow-n:L, Lcol-n:L);
rLN=resM3(Lrow-n:L, Lcol-n:L);
else
LN=LM3(Lrow-n:L, Lcol-n:Lcol+n);
rLN=resM3(Lrow-n:L, Lcol-n:Lcol+n);
elseif
elseif Lcol-n<1
LN=LM3(Lrow-n:Lrow+n, 1:Lcol+n);
rLN=resM3(Lrow-n:Lrow-+n, 1:Lcol+n);
elseif Lcol+n>L
LN=LM3(Lrow-n:Lrow+n, Lcol-n:L);
rLN=resM3(Lrow-n:Lrow-+n, Lcol-n:L);
end

% COUNT EACH STRAIN WITHIN THE NEIGHBORHOOD
[m,n]=size(LN); nn=m*n; C=find(LN==R); fr=length(C)/nn;

% REFER TO TRANSITION MATRIX & UPDATE FOCAL POINT
rd3=rand;
if LM3(Lrow,Lcol)==R
if rd3 < resM3(Lrow,Lcol)
LM3(Lrow,Lcol)=E;
resM3(Lrow,Lcol)=0;
else
rd4=rand;
if rd4 < prm
drinc=0.002*rand-0.001;
a=resM3(Lrow,Lcol)+drinc;
ifa>=dr_max
resM3(Lrow,Lcol)=dr_max;
elseif a <= dr_min
resM3(Lrow,Lcol)=dr_min;
else
resM3(Lrow,Lcol)=a;
end
end
end
else
if rd3 <fr
LM3(Lrow,Lcol)=R;
I=find(rLN~=0); resM3(Lrow,Lcol)=mean(mean(rLN(I)));
end
end
end
end

end

function [avgR4] = evolve scend4(L,R,E,dr min,dr max,prm,LM4,resM4,epoch,its)
for m=1:epoch

% CALCULATE AVG RESISTANCE
I=find(resM4~=0); avgR4(1,m)=mean(mean(resM4(I)));

for i=1:its

% RANDOMLY SELECT FOCAL POINT
Lb=linspace(0,1,L); rd1=rand; rd2=rand;
Lbl1=find(Lb<=rd1); Lb2=find(Lb<=rd2);
Lrow=Lb1(end); Lcol=Lb2(end);
LM4(Lrow,Lcol);

% GET GLOBAL COUNTS
nn=L*L; C=find(LM4==R); fr=length(C)/nn;

% REFER TO TRANSITION MATRIX & UPDATE FOCAL POINT
rd3=rand;
if LM4(Lrow,Lcol)==
if rd3 < resM4(Lrow,Lcol)
LM4(Lrow,Lcol)=E;
resM4(Lrow,Lcol)=0;
else
rd4=rand;
if rd4 < prm
drinc=0.002*rand-0.001;
a=resM4(Lrow,Lcol)+drinc;
ifa>=dr_max
resM4(Lrow,Lcol)=dr_max;
elseif a <= dr_min
resM4(Lrow,Lcol)=dr_min;
else
resM4(Lrow,Lcol)=a;
end
end
end
else
if rd3 <fr
LM4(Lrow,Lcol)=R;
I=find(resM4~=0); resM4(Lrow,Lcol)=mean(mean(resM4(I)));
end
end
end
end
end

